Gyrotactic trapping in laminar and turbulent Kolmogorov flow

نویسندگان

  • Francesco Santamaria
  • Filippo De Lillo
  • Massimo Cencini
  • Guido Boffetta
چکیده

Phytoplankton patchiness, namely the heterogeneous distribution of microalgae over multiple spatial scales, dramatically impacts marine ecology. A spectacular example of such heterogeneity occurs in thin phytoplankton layers (TPLs), where large numbers of photosynthetic microorganisms are found within a small depth interval. Some species of motile phytoplankton can form TPLs by gyrotactic trapping due to the interplay of their particular swimming style (directed motion biased against gravity) and the transport by a flow with shear along the direction of gravity. Here we consider gyrotactic swimmers in numerical simulations of the Kolmogorov shear flow, both in laminar and turbulent regimes. In the laminar case, we show that the swimmer motion is integrable and the formation of TPLs can be fully characterized by means of dynamical systems tools. We then study the effects of rotational Brownian motion or turbulent fluctuations (appearing when the Reynolds number is large enough) on TPLs. In both cases, we show that TPLs become transient, and we characterize their persistence. C ⃝ 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900956]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.

Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, ...

متن کامل

Laminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow

In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed a...

متن کامل

Numerical simulation of nanofluid flow over diamond-shaped elements in tandem in laminar and turbulent flow

In this paper, the Al2O3-water nanofluid flow in laminar and turbulent flows inside tubes fitted with diamond-shaped turbulators is numerically modeled. The nanofluid flow is modeled by employing a two-phase mixture method and applying the constant heat flux boundary condition at tube walls. In the results, the effects of different parameters such as the geometry of turbulators, volume fraction...

متن کامل

A Mthod for Generating the Turbulent Intermittency Function

A detection method based on sensitization of a squared double differentiated signal is developed which discriminates the turbulent zones from laminar zones quite accurately. The procedure adopts a variable threshold and a variable hold time of the order of the Kolmogorov time scale. The output file so generated, includes all the information for further analysis of the turbulent signal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014